KEVIN STEVEN NIÑO 11A
https://chulummm2.wikispaces.com/
trabajos
martes, 12 de junio de 2012
viernes, 1 de junio de 2012
LAS 20 PERSONAS MAS
IMPORTANTES PARA LA INFORMÁTICA
1. Tim
Berners-Lee
2. Sergey
Brin
3. Larry
Page
4.
Guillermo Marconi
5. Jack
Kilby
6. Gordon
Moore
7. Alan
Turing
8. Robert
Noyce
9. William
Shockley
10. Don
Estridge
11. Doug
Engelbert
12. Robert
Metcalfe
13. Vint
Cerf
14. Steve
Jobs
15. Andrew
Grove
16. Seymour
Cray
17. Pierre
Omidyar
18. Shawn
Fanning
19. Dennis Ritchie
20. Ted Hoff
El primero es el creador de la web y el segundo y el tercero son los creadores de Google...
VIRUS INFORMATICOS
CLASES:
1.
Infectores de carga
del area inicial
2.
Infectores de sistema
3.
Infectores de programacion ejecutables
4.
Caballos de troya
5.
Bombas de tiempo
6.
Autorrepticlaves
7.
Esquema de proteccion
8.
Gusanos
9.
Mutantes
10. Macrovirus
11. De correo electronico e
internet
Destructivo.
Gusano o Worm:
Es un programa cuya única finalidad es la de ir consumiendo la
memoria del sistema, se copia así mismo sucesivamente, hasta que desborda la
RAM, siendo ésta su única acción maligna.
Virus de macros:
Un macro es una secuencia de órdenes de teclado y mouse
asignadas a una sola tecla, símbolo o comando. Son muy útiles cuando este
grupo de instrucciones se necesitan repetidamente. Los virus de macros
afectan a archivos y plantillas que los contienen,
|
Virus de Programa:
Comúnmente infectan archivos con extensiones .EXE, .COM, .OVL,
.DRV, .BIN, .DLL, y .SYS., los dos primeros son atacados más frecuentemente
por que se utilizan mas.
|
Virus de Boot:
Son virus que infectan sectores de inicio y booteo (Boot Record)
de los diskettes y el sector de arranque maestro (Master Boot Record) de los
discos duros; también pueden infectar las tablas de particiones de los
discos.
|
Virus Residentes:
Se colocan automáticamente en la memoria de la computadora y
desde ella esperan la ejecución de algún programa o la utilización de algún
archivo.
|
Caballo de Troya:
Es un programa dañino que se oculta en otro programa legítimo, y
que produce sus efectos perniciosos al ejecutarse este último. En este caso,
no es capaz de
|
Virus mutantes o polimórficos:
Son virus que mutan, es decir cambian ciertas partes de su
código fuente haciendo uso de procesos de encriptación y de la misma
tecnología
|
Los Delitos Informaticos
LOS DELITOS INFORMÁTICOS
La Ley 1273 de 2009 creó nuevos tipos penales relacionados con delitos informáticos y la protección de la información y de los datos con penas de prisión de hasta 120 meses y multas de hasta 1500 salarios mínimos legales mensuales vigentes.
El 5 de enero de 2009, el Congreso de la República de Colombia promulgó la Ley 1273 “Por medio del cual se modifica el Código Penal, se crea un nuevo bien jurídico tutelado – denominado “De la Protección de la información y de los datos”- y se preservan integralmente los sistemas que utilicen las tecnologías de la información y las comunicaciones, entre otras disposiciones”.
Dicha ley tipificó como delitos una serie de conductas relacionadas con el manejo de datos personales, por lo que es de gran importancia que las empresas se blinden jurídicamente para evita incurrir en alguno de estos tipos penales.
No hay que olvidar que los avances tecnológicos y el empleo de los mismos para apropiarse ilícitamente del patrimonio de terceros a través de clonación de tarjetas bancarias, vulneración y alteración de los sistemas de cómputo para recibir servicios y transferencias electrónicas de fondos mediante manipulación de programas y afectación de los cajeros automáticos, entre otras, son conductas cada vez más usuales en todas partes del mundo. Según la Revista Cara y Sello, durante el 2007 en Colombia las empresas perdieron más de 6.6 billones de pesos a raíz de delitos informáticos.
De ahí la importancia de esta ley, que adiciona al Código Penal colombiano el Título VII BIS denominado "De la Protección de la información y de los datos" que divide en dos capítulos, a saber: “De los atentados contra la confidencialidad, la integridad y la disponibilidad de los datos y de los sistemas informáticos” y “De los atentados informáticos y otras infracciones”.
El capítulo primero adiciona el siguiente articulado (subrayado fuera del texto):
- Artículo 269A: ACCESO ABUSIVO A UN SISTEMA INFORMÁTICO. El que, sin autorización o por fuera de lo acordado, acceda en todo o en parte a un sistema informático protegido o no con una medida de seguridad, o se mantenga dentro del mismo en contra de la voluntad de quien tenga el legítimo derecho a excluirlo, incurrirá en pena de prisión de cuarenta y ocho (48) a noventa y seis (96) meses y en multa de 100 a 1000 salarios mínimos legales mensuales vigentes.
- Artículo 269B: OBSTACULIZACIÓN ILEGÍTIMA DE SISTEMA INFORMÁTICO O RED DE TELECOMUNICACIÓN. El que, sin estar facultado para ello, impida u obstaculice el funcionamiento o el acceso normal a un sistema informático, a los datos informáticos allí contenidos, o a una red de telecomunicaciones, incurrirá en pena de prisión de cuarenta y ocho (48) a noventa y seis (96) meses y en multa de 100 a 1000 salarios mínimos legales mensuales vigentes, siempre que la conducta no constituya delito sancionado con una pena mayor.
- Artículo 269C: INTERCEPTACIÓN DE DATOS INFORMÁTICOS. El que, sin orden judicial previa intercepte datos informáticos en su origen, destino o en el interior de un sistema informático, o las emisiones electromagnéticas provenientes de un sistema informático que los trasporte incurrirá en pena de prisión de treinta y seis (36) a setenta y dos (72) meses.
- Artículo 269D: DAÑO INFORMÁTICO. El que, sin estar facultado para ello, destruya, dañe, borre, deteriore, altere o suprima datos informáticos, o un sistema de tratamiento de información o sus partes o componentes lógicos, incurrirá en pena de prisión de cuarenta y ocho (48) a noventa y seis (96) meses y en multa de 100 a 1000 salarios mínimos legales mensuales vigentes.
- Artículo 269E: USO DE SOFTWARE MALICIOSO. El que, sin estar facultado para ello, produzca, trafique, adquiera, distribuya, venda, envíe, introduzca o extraiga del territorio nacional software malicioso u otros programas de computación de efectos dañinos, incurrirá en pena de prisión de cuarenta y ocho (48) a noventa y seis (96) meses y en multa de 100 a 1000 salarios mínimos legales mensuales vigentes.
- Artículo 269F: VIOLACIÓN DE DATOS PERSONALES. El que, sin estar facultado para ello, con provecho propio o de un tercero, obtenga, compile, sustraiga, ofrezca, venda, intercambie, envíe, compre, intercepte, divulgue, modifique o emplee códigos personales, datos personales contenidos en ficheros, archivos, bases de datos o medios semejantes, incurrirá en pena de prisión de cuarenta y ocho (48) a noventa y seis (96) meses y en multa de 100 a 1000 salarios mínimos legales mensuales vigentes.
Al respecto es importante aclarar que la Ley 1266 de 2008 definió el término dato personal como “cualquier pieza de información vinculada a una o varias personas determinadas o determinables o que puedan asociarse con una persona natural o jurídica”. Dicho artículo obliga a las empresas un especial cuidado en el manejo de los datos personales de sus empleados, toda vez que la ley obliga a quien “sustraiga” e “intercepte” dichos datos a pedir autorización al titular de los mismos.
- Artículo 269G: SUPLANTACIÓN DE SITIOS WEB PARA CAPTURAR DATOS PERSONALES. El que con objeto ilícito y sin estar facultado para ello, diseñe, desarrolle, trafique, venda, ejecute, programe o envíe páginas electrónicas, enlaces o ventanas emergentes, incurrirá en pena de prisión de cuarenta y ocho (48) a noventa y seis (96) meses y en multa de 100 a 1000 salarios mínimos legales mensuales vigentes, siempre que la conducta no constituya delito sancionado con pena más grave.
En la misma sanción incurrirá el que modifique el sistema de resolución de nombres de dominio, de tal manera que haga entrar al usuario a una IP diferente en la creencia de que acceda a su banco o a otro sitio personal o de confianza, siempre que la conducta no constituya delito sancionado con pena más grave.
La pena señalada en los dos incisos anteriores se agravará de una tercera parte a la mitad, si para consumarlo el agente ha reclutado víctimas en la cadena del delito.
Es primordial mencionar que este artículo tipifica lo que comúnmente se denomina “phishing”, modalidad de estafa que usualmente utiliza como medio el correo electrónico pero que cada vez con más frecuencia utilizan otros medios de propagación como por ejemplo la mensajería instantánea o las redes sociales. Según la Unidad de Delitos Informáticos de la Policía Judicial (Dijín) con esta modalidad se robaron más de 3.500 millones de pesos de usuarios del sistema financiero en el 2006.
Un punto importante a considerar es que el artículo 269H agrega como circunstancias de agravación punitiva de los tipos penales descritos anteriormente el aumento de la pena de la mitad a las tres cuartas partes si la conducta se cometiere:
Un punto importante a considerar es que el artículo 269H agrega como circunstancias de agravación punitiva de los tipos penales descritos anteriormente el aumento de la pena de la mitad a las tres cuartas partes si la conducta se cometiere:
- Sobre redes o sistemas informáticos o de comunicaciones estatales u oficiales o del sector financiero, nacionales o extranjeros.
- Por servidor público en ejercicio de sus funciones
- Aprovechando la confianza depositada por el poseedor de la información o por quien tuviere un vínculo contractual con este.
- Revelando o dando a conocer el contenido de la información en perjuicio de otro.
- Obteniendo provecho para si o para un tercero.
- Con fines terroristas o generando riesgo para la seguridad o defensa nacional.
- Utilizando como instrumento a un tercero de buena fe.
- Si quien incurre en estas conductas es el responsable de la administración, manejo o control de dicha información, además se le impondrá hasta por tres años, la pena de inhabilitación para el ejercicio de profesión relacionada con sistemas de información procesada con equipos computacionales.
Es de anotar que estos tipos penales obligan tanto a empresas como a personas naturales a prestar especial atención al tratamiento de equipos informáticos así como al tratamiento de los datos personales más teniendo en cuenta la circunstancia de agravación del inciso 3 del artículo 269H que señala “por quien tuviere un vínculo contractual con el poseedor de la información”.
Por lo tanto, se hace necesario tener unas condiciones de contratación, tanto con empleados como con contratistas, claras y precisas para evitar incurrir en la tipificación penal.
Por su parte, el capítulo segundo establece:
- Artículo 269I: HURTO POR MEDIOS INFORMÁTICOS Y SEMEJANTES. El que, superando medidas de seguridad informáticas, realice la conducta señalada en el artículo 239 manipulando un sistema informático, una red de sistema electrónico, telemático u otro medio semejante, o suplantando a un usuario ante los sistemas de autenticación y de autorización establecidos, incurrirá en las penas señaladas en el artículo 240 del Código Penal, es decir, penas de prisión de tres (3) a ocho (8) años.
- Artículo 269J: TRANSFERENCIA NO CONSENTIDA DE ACTIVOS. El que, con ánimo de lucro y valiéndose de alguna manipulación informática o artificio semejante, consiga la transferencia no consentida de cualquier activo en perjuicio de un tercero, siempre que la conducta no constituya delito sancionado con pena más grave, incurrirá en pena de prisión de cuarenta y ocho (48) a ciento veinte (120) meses y en multa de 200 a 1500 salarios mínimos legales mensuales vigentes.
La misma sanción se le impondrá a quien fabrique, introduzca, posea o facilite programa de computador destinado a la comisión del delito descrito en el inciso anterior, o de una estafa .
Si la conducta descrita en los dos incisos anteriores tuviere una cuantía superior a 200 salarios mínimos legales mensuales, la sanción allí señalada se incrementará en la mitad.
Así mismo, la Ley 1273 agrega como circunstancia de mayor punibilidad en el artículo 58 del Código Penal el hecho de realizar las conductas punibles utilizando medios informáticos, electrónicos ó telemáticos.
Como se puede apreciar, la Ley 1273 es un paso importante en la lucha contra los delitos informáticos en Colombia, por lo que es necesario que se esté preparado legalmente para enfrentar los retos que plantea.
En este sentido y desde un punto de vista empresarial, la nueva ley pone de presente la necesidad para los empleadores de crear mecanismos idóneos para la protección de uno de sus activos más valiosos como lo es la información.
Las empresas deben aprovechar la expedición de esta ley para adecuar sus contratos de trabajo, establecer deberes y sanciones a los trabajadores en los reglamentos internos de trabajo, celebrar acuerdos de confidencialidad con los mismos y crear puestos de trabajo encargados de velar por la seguridad de la información.
Por otra parte, es necesario regular aspectos de las nuevas modalidades laborales tales como el teletrabajo o los trabajos desde la residencia de los trabajadores los cuales exigen un nivel más alto de supervisión al manejo de la información.
Las empresas deben aprovechar la expedición de esta ley para adecuar sus contratos de trabajo, establecer deberes y sanciones a los trabajadores en los reglamentos internos de trabajo, celebrar acuerdos de confidencialidad con los mismos y crear puestos de trabajo encargados de velar por la seguridad de la información.
Por otra parte, es necesario regular aspectos de las nuevas modalidades laborales tales como el teletrabajo o los trabajos desde la residencia de los trabajadores los cuales exigen un nivel más alto de supervisión al manejo de la información.
Así mismo, resulta conveniente dictar charlas y seminarios al interior de las organizaciones con el fin de que los trabajadores sean concientes del nuevo rol que les corresponde en el nuevo mundo de la informática.
Lo anterior, teniendo en cuenta los perjuicios patrimoniales a los que se pueden enfrentar los empleadores debido al uso inadecuado de la información por parte de sus trabajadores y demás contratistas.
Pero más allá de ese importante factor, con la promulgación de esta ley se obtiene una herramienta importante para denunciar los hechos delictivos a los que se pueda ver afectado, un cambio importante si se tiene en cuenta que anteriormente las empresas no denunciaban dichos hechos no sólo para evitar daños en su reputación sino por no tener herramientas especiales.
Lo anterior, teniendo en cuenta los perjuicios patrimoniales a los que se pueden enfrentar los empleadores debido al uso inadecuado de la información por parte de sus trabajadores y demás contratistas.
Pero más allá de ese importante factor, con la promulgación de esta ley se obtiene una herramienta importante para denunciar los hechos delictivos a los que se pueda ver afectado, un cambio importante si se tiene en cuenta que anteriormente las empresas no denunciaban dichos hechos no sólo para evitar daños en su reputación sino por no tener herramientas especiales.
Por: Isabella Gandini, Andrés Isaza, Alejandro Delgado
viernes, 2 de marzo de 2012
Blog de Quimica
Fabricación de vidrio:
El vidrio se fabrica a partir de una mezcla compleja de compuestos vitrificantes, como sílice, fundentes, como los álcalis, y estabilizantes, como la cal. Estas materias primas se cargan en el horno de cubeta (de producción continua) por medio de una tolva. El horno se calienta con quemadores de gas o petróleo. La llama debe alcanzar una temperatura suficiente, y para ello el aire de combustión se calienta en unos recuperadores construidos con ladrillos refractarios antes de que llegue a los quemadores. El horno tiene dos recuperadores cuyas funciones cambian cada veinte minutos: uno se calienta por contacto con los gases ardientes mientras el otro proporciona el calor acumulado al aire de combustión. La mezcla se funde (zona de fusión) a unos 1.500 °C y avanza hacia la zona de enfriamiento, donde tiene lugar el recocido. En el otro extremo del horno se alcanza una temperatura de 1.200 a 800 °C. Al vidrio así obtenido se le da forma por laminación (como en el esquema superior) o por otro método.
Vidrio (industria), sustancia amorfa fabricada sobre todo a partir de sílice (SiO2) fundida a altas temperaturas con boratos o fosfatos. También se encuentra en la naturaleza, por ejemplo en la obsidiana, un material volcánico, o en los enigmáticos objetos conocidos como tectitas. El vidrio es una sustancia amorfa porque no es ni un sólido ni un líquido, sino que se halla en un estado vítreo en el que las unidades moleculares, aunque están dispuestas de forma desordenada, tienen suficiente cohesión para presentar rigidez mecánica. El vidrio se enfría hasta solidificarse sin que se produzca cristalización; el calentamiento puede devolverle su forma líquida. Suele ser transparente, pero también puede ser traslúcido u opaco. Su color varía según los ingredientes empleados en su fabricación.
El vidrio fundido es maleable y se le puede dar forma mediante diversas técnicas. En frío, puede ser tallado. A bajas temperaturas es quebradizo y se rompe con fractura concoidea (en forma de concha de mar).
Se fabricó por primera vez antes del 2000 a.C., y desde entonces se ha empleado para fabricar recipientes de uso doméstico así como objetos decorativos y ornamentales, entre ellos joyas. (En este artículo trataremos cualquier vidrio con características comercialmente útiles en cuanto a trasparencia, índice de refracción, color… En Vidrio (arte) se trata la historia del arte y la técnica del trabajo del vidrio).
Materiales y técnicas:
El ingrediente principal del vidrio es la sílice, obtenida a partir de arena, pedernal o cuarzo.
Composición y propiedades:
La sílice se funde a temperaturas muy elevadas para formar vidrio. Como éste tiene un elevado punto de fusión y sufre poca contracción y dilatación con los cambios de temperatura, es adecuado para aparatos de laboratorio y objetos sometidos a choques térmicos (deformaciones debidas a cambios bruscos de temperatura), como los espejos de los telescopios. El vidrio es un mal conductor del calor y la electricidad, por lo que resulta práctico para el aislamiento térmico y eléctrico. En la mayoría de los vidrios, la sílice se combina con otras materias primas en distintas proporciones. Los fundentes alcalinos, por lo general carbonato de sodio o potasio, disminuyen el punto de fusión y la viscosidad de la sílice. La piedra caliza o la dolomita (carbonato de calcio y magnesio) actúan como estabilizante. Otros ingredientes, como el plomo o el bórax, proporcionan al vidrio determinadas propiedades físicas.
Vidrio soluble y vidrio sodocálcico:
El vidrio de elevado contenido en sodio que puede disolverse en agua para formar un líquido viscoso se denomina vidrio soluble y se emplea como barniz ignífugo en ciertos objetos y como sellador. La mayor parte del vidrio producido presenta una elevada concentración de sodio y calcio en su composición; se conoce como vidrio sodocálcico y se utiliza para fabricar botellas, cristalerías de mesa, bombillas (focos), vidrios de ventana y vidrios laminados.
Vidrio al plomo:
El vidrio fino empleado para cristalerías de mesa y conocido como cristal es el resultado de fórmulas que combinan silicato de potasio con óxido de plomo. El vidrio al plomo es pesado y refracta más la luz, por lo que resulta apropiado para lentes o prismas y para bisutería. Como el plomo absorbe la radiación de alta energía, el vidrio al plomo se utiliza en pantallas para proteger al personal de las instalaciones nucleares.
Vidrio de borosilicato:
Este vidrio contiene bórax entre sus ingredientes fundamentales, junto con sílice y álcali. Destaca por su durabilidad y resistencia a los ataques químicos y las altas temperaturas, por lo que se utiliza mucho en utensilios de cocina, aparatos de laboratorio y equipos para procesos químicos.
Color:
Las impurezas en las materias primas afectan al color del vidrio. Para obtener una sustancia clara e incolora, los fabricantes añaden manganeso con el fin de eliminar los efectos de pequeñas cantidades de hierro que producen tonos verdes y pardos. El cristal puede colorearse disolviendo en él óxidos metálicos, sulfuros o seleniuros. Otros colorantes se dispersan en forma de partículas microscópicas.
Ingredientes diversos:
Entre los componentes típicos del vidrio están los residuos de vidrio de composición similar, que potencian su fusión y homogeneización. A menudo se añaden elementos de afino, como arsénico o antimonio, para desprender pequeñas burbujas durante la fusión.
Propiedades físicas:
Según su composición, algunos vidrios pueden fundir a temperaturas de sólo 500 °C; en cambio, otros necesitan 1.650 ºC. La resistencia a la tracción, que suele estar entre los 3.000 y 5.500 N/cm2, puede llegar a los 70.000 N/cm2 si el vidrio recibe un tratamiento especial. La densidad relativa (densidad con respecto al agua) va de 2 a 8, es decir, el vidrio puede ser más ligero que el aluminio o más pesado que el acero. Las propiedades ópticas y eléctricas también pueden variar mucho.
Tipos de vidrio comercial:
La amplia gama de aplicaciones del vidrio ha hecho que se desarrollen numerosos tipos distintos.
Vidrio de ventana:
El vidrio de ventana, que ya se empleaba en el siglo I d.C., se fabricaba utilizando moldes o soplando cilindros huecos que se cortaban y aplastaban para formar láminas. En el proceso de corona, técnica posterior, se soplaba un trozo de vidrio dándole forma de globo aplastado o corona. La varilla se fijaba al lado plano y se retiraba el tubo de soplado. La corona volvía a calentarse y se hacía girar con la varilla; el agujero dejado por el tubo se hacía más grande y el disco acababa formando una gran lámina circular. La varilla se partía, lo que dejaba una marca. En la actualidad, casi todo el vidrio de ventana se fabrica de forma mecánica estirándolo desde una piscina de vidrio fundido. En el proceso de Foucault, la lámina de vidrio se estira a través de un bloque refractario ranurado sumergido en la superficie de la piscina de este material y se lleva a un horno vertical de recocido, de donde sale para ser cortado en hojas.
Vidrio de placa:
El vidrio de ventana normal producido por estiramiento no tiene un espesor uniforme, debido a la naturaleza del proceso de fabricación. Las variaciones de espesor distorsionan la imagen de los objetos vistos a través de una hoja de ese vidrio.
El método tradicional de eliminar esos defectos ha sido emplear vidrio laminado bruñido y pulimentado, conocido como vidrio de placa. Éste se produjo por primera vez en Saint Gobain (Francia) en 1668, vertiendo vidrio en una mesa de hierro y aplanándolo con un rodillo. Después del recocido, la lámina se bruñía y pulimentaba por ambos lados (véase Operaciones de acabado). Hoy, el vidrio de placa se fabrica pasando el material vítreo de forma continua entre dobles rodillos situados en el extremo de un crisol que contiene el material fundido. Después de recocer la lámina en bruto, ambas caras son acabadas de forma continua y simultánea.
En la actualidad, el bruñido y el pulimentado están siendo sustituidos por el proceso de vidrio flotante, más barato. En este proceso se forman superficies planas en ambas caras haciendo flotar una capa continua de vidrio sobre un baño de estaño fundido. La temperatura es tan alta que las imperfecciones superficiales se eliminan por el flujo del vidrio. La temperatura se hace descender poco a poco a medida que el material avanza por el baño de estaño y, al llegar al extremo, el vidrio pasa por un largo horno de recocido.
En arquitectura se emplea vidrio laminado sin pulir, a menudo con superficies figurativas producidas por dibujos grabados en los rodillos. El vidrio de rejilla, que se fabrica introduciendo tela metálica en el vidrio fundido antes de pasar por los rodillos, no se astilla al recibir un golpe. El vidrio de seguridad, como el utilizado en los parabrisas de los automóviles o en las gafas de seguridad, se obtiene tras la colocación de una lámina de plástico transparente (polivinilbutiral) entre dos láminas finas de vidrio de placa. El plástico se adhiere al vidrio y mantiene fijas las esquirlas incluso después de un fuerte impacto.
Botellas y recipientes
Las botellas, tarros y otros recipientes de vidrio se fabrican mediante un proceso automático que combina el prensado (para formar el extremo abierto) y el soplado (para formar el cuerpo hueco del recipiente). En una máquina típica para soplar botellas, se deja caer vidrio fundido en un molde estrecho invertido y se presiona con un chorro de aire hacia el extremo inferior del molde, que corresponde al cuello de la botella terminada. Después, un desviador desciende sobre la parte superior del molde, y un chorro de aire que viene desde abajo y pasa por el cuello da la primera forma a la botella. Esta botella a medio formar se sujeta por el cuello, se invierte y se pasa a un segundo molde de acabado, en la que otro chorro de aire le da sus dimensiones finales. En otro tipo de máquina que se utiliza para recipientes de boca ancha, se prensa el vidrio en un molde con un pistón antes de soplarlo en un molde de acabado. Los tarros de poco fondo, como los empleados para cosméticos, son prensados sin más.
Vidrio óptico:
La mayoría de las lentes que se utilizan en gafas (anteojos), microscopios, telescopios, cámaras y otros instrumentos ópticos se fabrican con vidrio óptico (Véase Óptica). Éste se diferencia de los demás vidrios por su forma de desviar (refractar) la luz. La fabricación de vidrio óptico es un proceso delicado y exigente. Las materias primas deben tener una gran pureza, y hay que tener mucho cuidado para que no se introduzcan imperfecciones en el proceso de fabricación. Pequeñas burbujas de aire o inclusiones de materia no vitrificada pueden provocar distorsiones en la superficie de la lente. Las llamadas cuerdas, estrías causadas por la falta de homogeneidad química del vidrio, también pueden causar distorsiones importantes, y las tensiones en el vidrio debidas a un recocido imperfecto afectan también a las cualidades ópticas.
En la antigüedad, el vidrio óptico se fundía en crisoles durante periodos prolongados, removiéndolo constantemente con una varilla refractaria. Después de un largo recocido, se partía en varios fragmentos; los mejores volvían a ser triturados, recalentados y prensados con la forma deseada. En los últimos años se ha adoptado un método para la fabricación continua de vidrio en tanques revestidos de platino, con agitadores en las cámaras cilíndricas de los extremos (llamadas homogeneizadores). Este proceso produce cantidades mayores de vidrio óptico, con menor coste y mayor calidad que el método anterior. Para las lentes sencillas se usa cada vez más el plástico en lugar del vidrio. Aunque no es tan duradero ni resistente al rayado como el vidrio, es fuerte y ligero y puede absorber tintes.
Vidrio fotosensible:
En el vidrio fotosensible, los iones de oro o plata del material responden a la acción de la luz, de forma similar a lo que ocurre en una película fotográfica. Este vidrio se utiliza en procesos de impresión y reproducción, y su tratamiento térmico tras la exposición a la luz produce cambios permanentes.
El vidrio fotocromático se oscurece al ser expuesto a la luz tras lo cual recupera su claridad original. Este comportamiento se debe a la acción de la luz sobre cristales diminutos de cloruro de plata o bromuro de plata distribuidos por todo el vidrio. Es muy utilizado en lentes de gafas o anteojos y en electrónica.
Vitrocerámica:
En los vidrios que contienen determinados metales se produce una cristalización localizada al ser expuestos a radiación ultravioleta. Si se calientan a temperaturas elevadas, estos vidrios se convierten en vitrocerámica, que tiene una resistencia mecánica y unas propiedades de aislamiento eléctrico superiores a las del vidrio ordinario. Este tipo de cerámica se utiliza en la actualidad en utensilios de cocina, conos frontales de cohetes o ladrillos termorresistentes para recubrir naves espaciales. Otros vidrios que contienen metales o aleaciones pueden magnetizarse, son resistentes y flexibles y resultan muy útiles para transformadores eléctricos de alta eficiencia.
Fibra de vidrio:
Es posible producir fibras de vidrio —que pueden tejerse como las fibras textiles— estirando vidrio fundido hasta diámetros inferiores a una centésima de milímetro. Se pueden producir tanto hilos multifilamento largos y continuos como fibras cortas de 25 o 30 centímetros de largo.
Una vez tejida para formar telas, la fibra de vidrio resulta ser un excelente material para cortinas y tapicería debido a su estabilidad química, solidez y resistencia al fuego y al agua. Los tejidos de fibra de vidrio, sola o en combinación con resinas, constituyen un aislamiento eléctrico excelente. Impregnando fibras de vidrio con plásticos se forma un tipo compuesto que combina la solidez y estabilidad química del vidrio con la resistencia al impacto del plástico. Otras fibras de vidrio muy útiles son las empleadas para transmitir señales ópticas en comunicaciones informáticas y telefónicas mediante la nueva tecnología de la fibra óptica, en rápido crecimiento.
Otros tipos de vidrio:
Los paveses de vidrio son bloques de construcción huecos, con nervios o dibujos en los lados, que se pueden unir con argamasa y utilizarse en paredes exteriores o tabiques internos.
La espuma de vidrio, empleada en flotadores o como aislante, se fabrica añadiendo un agente espumante al vidrio triturado y calentando la mezcla hasta el punto de reblandecimiento. El agente espumante libera un gas que produce una multitud de pequeñas burbujas dentro del vidrio.
En la década de 1950 se desarrollaron fibras ópticas que han encontrado muchas aplicaciones en la ciencia, la medicina y la industria. Si se colocan de forma paralela fibras de vidrio de alto índice de refracciones separadas por capas delgadas de vidrio de bajo índice de refracción, es posible transmitir imágenes a través de las fibras. Los fibroscopios, que contienen muchos haces flexibles de estas fibras, pueden transmitir imágenes a través de ángulos muy cerrados, lo que facilita la inspección de zonas que suelen ser inaccesibles. Las aplicaciones de la fibra óptica rígida, como lupas, reductores y pantallas también mejoran la visión. Empleadas en combinación con láseres, las fibras ópticas son hoy cruciales para la telefonía de larga distancia y la comunicación entre ordenadores (computadoras).
El vidrio láser es vidrio dopado con un pequeño porcentaje de óxido de neodimio, y es capaz de emitir luz láser si se monta en un dispositivo adecuado y se ‘bombea’ con luz ordinaria. Está considerado como una buena fuente láser por la relativa facilidad con que pueden obtenerse pedazos grandes y homogéneos de este vidrio.
Los vidrios dobles son dos láminas de vidrio de placa o de ventana selladas por los extremos, con un espacio de aire entre ambas. Para su construcción pueden usarse varios tipos de selladores y materiales de separación. Empleados en ventanas, proporcionan un excelente aislamiento térmico y no se empañan aunque haya humedad.
En la década de 1980 se desarrolló en la Universidad de Florida (Estados Unidos) un método para fabricar grandes estructuras de vidrio sin utilizar altas temperaturas. La técnica, denominada de sol-gel, consiste en mezclar agua con un producto químico como el tetrametoxisilano para fabricar un polímero de óxido de silicio; un aditivo químico reduce la velocidad del proceso de condensación y permite que el polímero se constituya uniformemente. Este método podría resultar útil para fabricar formas grandes y complejas con propiedades específicas.
Propiedades y estado natural:
Se prepara en forma de polvo amorfo amarillo pardo o de cristales negros-grisáceos. Se obtiene calentando sílice, o dióxido de silicio (SiO2), con un agente reductor, como carbono o magnesio, en un horno eléctrico. El silicio cristalino tiene una dureza de 7, suficiente para rayar el vidrio, de dureza de 5 a 7. El silicio tiene un punto de fusión de 1.410 °C, un punto de ebullición de 2.355 °C y una densidad relativa de 2,33. Su masa atómica es 28,086.
Se disuelve en ácido fluorhídrico formando el gas tetrafluoruro de silicio, SiF4, y es atacado por los ácidos nítrico, clorhídrico y sulfúrico, aunque el dióxido de silicio formado inhibe la reacción. También se disuelve en hidróxido de sodio, formando silicato de sodio y gas hidrógeno. A temperaturas ordinarias el silicio no es atacado por el aire, pero a temperaturas elevadas reacciona con el oxígeno formando una capa de sílice que impide que continúe la reacción. A altas temperaturas reacciona también con nitrógeno y cloro formando nitruro de silicio y cloruro de silicio respectivamente.
El silicio constituye un 28% de la corteza terrestre. No existe en estado libre, sino que se encuentra en forma de dióxido de silicio y de silicatos complejos. Los minerales que contienen silicio constituyen cerca del 40% de todos los minerales comunes, incluyendo más del 90% de los minerales que forman rocas volcánicas. El mineral cuarzo, sus variedades (cornalina, crisoprasa, ónice, pedernal y jaspe) y los minerales cristobalita y tridimita son las formas cristalinas del silicio existentes en la naturaleza. El dióxido de silicio es el componente principal de la arena. Los silicatos (en concreto los de aluminio, calcio y magnesio) son los componentes principales de las arcillas, el suelo y las rocas, en forma de feldespatos, anfíboles, piroxenos, micas y ceolitas, y de piedras semipreciosas como el olivino, granate, zircón, topacio y turmalina.
Aplicaciones:
Se utiliza en la industria del acero como componente de las aleaciones de silicio-acero. Para fabricar el acero, se desoxida el acero fundido añadiéndole pequeñas cantidades de silicio; el acero común contiene menos de un 0,03% de silicio. El acero de silicio, que contiene de 2,5 a 4% de silicio, se usa para fabricar los núcleos de los transformadores eléctricos, pues la aleación presenta baja histéresis (véase Magnetismo). Existe una aleación de acero, el durirón, que contiene un 15% de silicio y es dura, frágil y resistente a la corrosión; el durirón se usa en los equipos industriales que están en contacto con productos químicos corrosivos. El silicio se utiliza también en las aleaciones de cobre, como el bronce y el latón.
El silicio es un semiconductor; su resistividad a la corriente eléctrica a temperatura ambiente varía entre la de los metales y la de los aislantes. La conductividad del silicio se puede controlar añadiendo pequeñas cantidades de impurezas llamadas dopantes. La capacidad de controlar las propiedades eléctricas del silicio y su abundancia en la naturaleza han posibilitado el desarrollo y aplicación de los transistores y circuitos integrados que se utilizan en la industria electrónica.
La sílice y los silicatos se utilizan en la fabricación de vidrio, barnices, esmaltes, cemento y porcelana, y tienen importantes aplicaciones individuales. La sílice fundida, que es un vidrio que se obtiene fundiendo cuarzo o hidrolizando tetracloruro de silicio, se caracteriza por un bajo coeficiente de dilatación y una alta resistencia a la mayoría de los productos químicos. El gel de sílice es una sustancia incolora, porosa y amorfa; se prepara eliminando parte del agua de un precipitado gelatinoso de ácido silícico, SiO2•H2O, el cual se obtiene añadiendo ácido clorhídrico a una disolución de silicato de sodio. El gel de sílice absorbe agua y otras sustancias y se usa como agente desecante y decolorante.
El silicato de sodio (Na2SiO3), también llamado vidrio, es un silicato sintético importante, sólido amorfo, incoloro y soluble en agua, que funde a 1.088 °C. Se obtiene haciendo reaccionar sílice (arena) y carbonato de sodio a alta temperatura, o calentando arena con hidróxido de sodio concentrado a alta presión. La disolución acuosa de silicato de sodio se utiliza para conservar huevos; como sustituto de la cola o pegamento para hacer cajas y otros contenedores; para unir gemas artificiales; como agente incombustible, y como relleno y adherente en jabones y limpiadores. Otro compuesto de silicio importante es el carborundo, un compuesto de silicio y carbono que se utiliza como abrasivo.
El monóxido de silicio, SiO, se usa para proteger materiales, recubriéndolos de forma que la superficie exterior se oxida al dióxido, SiO2. Estas capas se aplican también a los filtros de interferencias.
El vidrio se fabrica a partir de una mezcla compleja de compuestos vitrificantes, como sílice, fundentes, como los álcalis, y estabilizantes, como la cal. Estas materias primas se cargan en el horno de cubeta (de producción continua) por medio de una tolva. El horno se calienta con quemadores de gas o petróleo. La llama debe alcanzar una temperatura suficiente, y para ello el aire de combustión se calienta en unos recuperadores construidos con ladrillos refractarios antes de que llegue a los quemadores. El horno tiene dos recuperadores cuyas funciones cambian cada veinte minutos: uno se calienta por contacto con los gases ardientes mientras el otro proporciona el calor acumulado al aire de combustión. La mezcla se funde (zona de fusión) a unos 1.500 °C y avanza hacia la zona de enfriamiento, donde tiene lugar el recocido. En el otro extremo del horno se alcanza una temperatura de 1.200 a 800 °C. Al vidrio así obtenido se le da forma por laminación (como en el esquema superior) o por otro método.
Vidrio (industria), sustancia amorfa fabricada sobre todo a partir de sílice (SiO2) fundida a altas temperaturas con boratos o fosfatos. También se encuentra en la naturaleza, por ejemplo en la obsidiana, un material volcánico, o en los enigmáticos objetos conocidos como tectitas. El vidrio es una sustancia amorfa porque no es ni un sólido ni un líquido, sino que se halla en un estado vítreo en el que las unidades moleculares, aunque están dispuestas de forma desordenada, tienen suficiente cohesión para presentar rigidez mecánica. El vidrio se enfría hasta solidificarse sin que se produzca cristalización; el calentamiento puede devolverle su forma líquida. Suele ser transparente, pero también puede ser traslúcido u opaco. Su color varía según los ingredientes empleados en su fabricación.
El vidrio fundido es maleable y se le puede dar forma mediante diversas técnicas. En frío, puede ser tallado. A bajas temperaturas es quebradizo y se rompe con fractura concoidea (en forma de concha de mar).
Se fabricó por primera vez antes del 2000 a.C., y desde entonces se ha empleado para fabricar recipientes de uso doméstico así como objetos decorativos y ornamentales, entre ellos joyas. (En este artículo trataremos cualquier vidrio con características comercialmente útiles en cuanto a trasparencia, índice de refracción, color… En Vidrio (arte) se trata la historia del arte y la técnica del trabajo del vidrio).
Materiales y técnicas:
El ingrediente principal del vidrio es la sílice, obtenida a partir de arena, pedernal o cuarzo.
Composición y propiedades:
La sílice se funde a temperaturas muy elevadas para formar vidrio. Como éste tiene un elevado punto de fusión y sufre poca contracción y dilatación con los cambios de temperatura, es adecuado para aparatos de laboratorio y objetos sometidos a choques térmicos (deformaciones debidas a cambios bruscos de temperatura), como los espejos de los telescopios. El vidrio es un mal conductor del calor y la electricidad, por lo que resulta práctico para el aislamiento térmico y eléctrico. En la mayoría de los vidrios, la sílice se combina con otras materias primas en distintas proporciones. Los fundentes alcalinos, por lo general carbonato de sodio o potasio, disminuyen el punto de fusión y la viscosidad de la sílice. La piedra caliza o la dolomita (carbonato de calcio y magnesio) actúan como estabilizante. Otros ingredientes, como el plomo o el bórax, proporcionan al vidrio determinadas propiedades físicas.
Vidrio soluble y vidrio sodocálcico:
El vidrio de elevado contenido en sodio que puede disolverse en agua para formar un líquido viscoso se denomina vidrio soluble y se emplea como barniz ignífugo en ciertos objetos y como sellador. La mayor parte del vidrio producido presenta una elevada concentración de sodio y calcio en su composición; se conoce como vidrio sodocálcico y se utiliza para fabricar botellas, cristalerías de mesa, bombillas (focos), vidrios de ventana y vidrios laminados.
Vidrio al plomo:
El vidrio fino empleado para cristalerías de mesa y conocido como cristal es el resultado de fórmulas que combinan silicato de potasio con óxido de plomo. El vidrio al plomo es pesado y refracta más la luz, por lo que resulta apropiado para lentes o prismas y para bisutería. Como el plomo absorbe la radiación de alta energía, el vidrio al plomo se utiliza en pantallas para proteger al personal de las instalaciones nucleares.
Vidrio de borosilicato:
Este vidrio contiene bórax entre sus ingredientes fundamentales, junto con sílice y álcali. Destaca por su durabilidad y resistencia a los ataques químicos y las altas temperaturas, por lo que se utiliza mucho en utensilios de cocina, aparatos de laboratorio y equipos para procesos químicos.
Color:
Las impurezas en las materias primas afectan al color del vidrio. Para obtener una sustancia clara e incolora, los fabricantes añaden manganeso con el fin de eliminar los efectos de pequeñas cantidades de hierro que producen tonos verdes y pardos. El cristal puede colorearse disolviendo en él óxidos metálicos, sulfuros o seleniuros. Otros colorantes se dispersan en forma de partículas microscópicas.
Ingredientes diversos:
Entre los componentes típicos del vidrio están los residuos de vidrio de composición similar, que potencian su fusión y homogeneización. A menudo se añaden elementos de afino, como arsénico o antimonio, para desprender pequeñas burbujas durante la fusión.
Propiedades físicas:
Según su composición, algunos vidrios pueden fundir a temperaturas de sólo 500 °C; en cambio, otros necesitan 1.650 ºC. La resistencia a la tracción, que suele estar entre los 3.000 y 5.500 N/cm2, puede llegar a los 70.000 N/cm2 si el vidrio recibe un tratamiento especial. La densidad relativa (densidad con respecto al agua) va de 2 a 8, es decir, el vidrio puede ser más ligero que el aluminio o más pesado que el acero. Las propiedades ópticas y eléctricas también pueden variar mucho.
Tipos de vidrio comercial:
La amplia gama de aplicaciones del vidrio ha hecho que se desarrollen numerosos tipos distintos.
Vidrio de ventana:
El vidrio de ventana, que ya se empleaba en el siglo I d.C., se fabricaba utilizando moldes o soplando cilindros huecos que se cortaban y aplastaban para formar láminas. En el proceso de corona, técnica posterior, se soplaba un trozo de vidrio dándole forma de globo aplastado o corona. La varilla se fijaba al lado plano y se retiraba el tubo de soplado. La corona volvía a calentarse y se hacía girar con la varilla; el agujero dejado por el tubo se hacía más grande y el disco acababa formando una gran lámina circular. La varilla se partía, lo que dejaba una marca. En la actualidad, casi todo el vidrio de ventana se fabrica de forma mecánica estirándolo desde una piscina de vidrio fundido. En el proceso de Foucault, la lámina de vidrio se estira a través de un bloque refractario ranurado sumergido en la superficie de la piscina de este material y se lleva a un horno vertical de recocido, de donde sale para ser cortado en hojas.
Vidrio de placa:
El vidrio de ventana normal producido por estiramiento no tiene un espesor uniforme, debido a la naturaleza del proceso de fabricación. Las variaciones de espesor distorsionan la imagen de los objetos vistos a través de una hoja de ese vidrio.
El método tradicional de eliminar esos defectos ha sido emplear vidrio laminado bruñido y pulimentado, conocido como vidrio de placa. Éste se produjo por primera vez en Saint Gobain (Francia) en 1668, vertiendo vidrio en una mesa de hierro y aplanándolo con un rodillo. Después del recocido, la lámina se bruñía y pulimentaba por ambos lados (véase Operaciones de acabado). Hoy, el vidrio de placa se fabrica pasando el material vítreo de forma continua entre dobles rodillos situados en el extremo de un crisol que contiene el material fundido. Después de recocer la lámina en bruto, ambas caras son acabadas de forma continua y simultánea.
En la actualidad, el bruñido y el pulimentado están siendo sustituidos por el proceso de vidrio flotante, más barato. En este proceso se forman superficies planas en ambas caras haciendo flotar una capa continua de vidrio sobre un baño de estaño fundido. La temperatura es tan alta que las imperfecciones superficiales se eliminan por el flujo del vidrio. La temperatura se hace descender poco a poco a medida que el material avanza por el baño de estaño y, al llegar al extremo, el vidrio pasa por un largo horno de recocido.
En arquitectura se emplea vidrio laminado sin pulir, a menudo con superficies figurativas producidas por dibujos grabados en los rodillos. El vidrio de rejilla, que se fabrica introduciendo tela metálica en el vidrio fundido antes de pasar por los rodillos, no se astilla al recibir un golpe. El vidrio de seguridad, como el utilizado en los parabrisas de los automóviles o en las gafas de seguridad, se obtiene tras la colocación de una lámina de plástico transparente (polivinilbutiral) entre dos láminas finas de vidrio de placa. El plástico se adhiere al vidrio y mantiene fijas las esquirlas incluso después de un fuerte impacto.
Botellas y recipientes
Las botellas, tarros y otros recipientes de vidrio se fabrican mediante un proceso automático que combina el prensado (para formar el extremo abierto) y el soplado (para formar el cuerpo hueco del recipiente). En una máquina típica para soplar botellas, se deja caer vidrio fundido en un molde estrecho invertido y se presiona con un chorro de aire hacia el extremo inferior del molde, que corresponde al cuello de la botella terminada. Después, un desviador desciende sobre la parte superior del molde, y un chorro de aire que viene desde abajo y pasa por el cuello da la primera forma a la botella. Esta botella a medio formar se sujeta por el cuello, se invierte y se pasa a un segundo molde de acabado, en la que otro chorro de aire le da sus dimensiones finales. En otro tipo de máquina que se utiliza para recipientes de boca ancha, se prensa el vidrio en un molde con un pistón antes de soplarlo en un molde de acabado. Los tarros de poco fondo, como los empleados para cosméticos, son prensados sin más.
Vidrio óptico:
La mayoría de las lentes que se utilizan en gafas (anteojos), microscopios, telescopios, cámaras y otros instrumentos ópticos se fabrican con vidrio óptico (Véase Óptica). Éste se diferencia de los demás vidrios por su forma de desviar (refractar) la luz. La fabricación de vidrio óptico es un proceso delicado y exigente. Las materias primas deben tener una gran pureza, y hay que tener mucho cuidado para que no se introduzcan imperfecciones en el proceso de fabricación. Pequeñas burbujas de aire o inclusiones de materia no vitrificada pueden provocar distorsiones en la superficie de la lente. Las llamadas cuerdas, estrías causadas por la falta de homogeneidad química del vidrio, también pueden causar distorsiones importantes, y las tensiones en el vidrio debidas a un recocido imperfecto afectan también a las cualidades ópticas.
En la antigüedad, el vidrio óptico se fundía en crisoles durante periodos prolongados, removiéndolo constantemente con una varilla refractaria. Después de un largo recocido, se partía en varios fragmentos; los mejores volvían a ser triturados, recalentados y prensados con la forma deseada. En los últimos años se ha adoptado un método para la fabricación continua de vidrio en tanques revestidos de platino, con agitadores en las cámaras cilíndricas de los extremos (llamadas homogeneizadores). Este proceso produce cantidades mayores de vidrio óptico, con menor coste y mayor calidad que el método anterior. Para las lentes sencillas se usa cada vez más el plástico en lugar del vidrio. Aunque no es tan duradero ni resistente al rayado como el vidrio, es fuerte y ligero y puede absorber tintes.
Vidrio fotosensible:
En el vidrio fotosensible, los iones de oro o plata del material responden a la acción de la luz, de forma similar a lo que ocurre en una película fotográfica. Este vidrio se utiliza en procesos de impresión y reproducción, y su tratamiento térmico tras la exposición a la luz produce cambios permanentes.
El vidrio fotocromático se oscurece al ser expuesto a la luz tras lo cual recupera su claridad original. Este comportamiento se debe a la acción de la luz sobre cristales diminutos de cloruro de plata o bromuro de plata distribuidos por todo el vidrio. Es muy utilizado en lentes de gafas o anteojos y en electrónica.
Vitrocerámica:
En los vidrios que contienen determinados metales se produce una cristalización localizada al ser expuestos a radiación ultravioleta. Si se calientan a temperaturas elevadas, estos vidrios se convierten en vitrocerámica, que tiene una resistencia mecánica y unas propiedades de aislamiento eléctrico superiores a las del vidrio ordinario. Este tipo de cerámica se utiliza en la actualidad en utensilios de cocina, conos frontales de cohetes o ladrillos termorresistentes para recubrir naves espaciales. Otros vidrios que contienen metales o aleaciones pueden magnetizarse, son resistentes y flexibles y resultan muy útiles para transformadores eléctricos de alta eficiencia.
Fibra de vidrio:
Es posible producir fibras de vidrio —que pueden tejerse como las fibras textiles— estirando vidrio fundido hasta diámetros inferiores a una centésima de milímetro. Se pueden producir tanto hilos multifilamento largos y continuos como fibras cortas de 25 o 30 centímetros de largo.
Una vez tejida para formar telas, la fibra de vidrio resulta ser un excelente material para cortinas y tapicería debido a su estabilidad química, solidez y resistencia al fuego y al agua. Los tejidos de fibra de vidrio, sola o en combinación con resinas, constituyen un aislamiento eléctrico excelente. Impregnando fibras de vidrio con plásticos se forma un tipo compuesto que combina la solidez y estabilidad química del vidrio con la resistencia al impacto del plástico. Otras fibras de vidrio muy útiles son las empleadas para transmitir señales ópticas en comunicaciones informáticas y telefónicas mediante la nueva tecnología de la fibra óptica, en rápido crecimiento.
Otros tipos de vidrio:
Los paveses de vidrio son bloques de construcción huecos, con nervios o dibujos en los lados, que se pueden unir con argamasa y utilizarse en paredes exteriores o tabiques internos.
La espuma de vidrio, empleada en flotadores o como aislante, se fabrica añadiendo un agente espumante al vidrio triturado y calentando la mezcla hasta el punto de reblandecimiento. El agente espumante libera un gas que produce una multitud de pequeñas burbujas dentro del vidrio.
En la década de 1950 se desarrollaron fibras ópticas que han encontrado muchas aplicaciones en la ciencia, la medicina y la industria. Si se colocan de forma paralela fibras de vidrio de alto índice de refracciones separadas por capas delgadas de vidrio de bajo índice de refracción, es posible transmitir imágenes a través de las fibras. Los fibroscopios, que contienen muchos haces flexibles de estas fibras, pueden transmitir imágenes a través de ángulos muy cerrados, lo que facilita la inspección de zonas que suelen ser inaccesibles. Las aplicaciones de la fibra óptica rígida, como lupas, reductores y pantallas también mejoran la visión. Empleadas en combinación con láseres, las fibras ópticas son hoy cruciales para la telefonía de larga distancia y la comunicación entre ordenadores (computadoras).
El vidrio láser es vidrio dopado con un pequeño porcentaje de óxido de neodimio, y es capaz de emitir luz láser si se monta en un dispositivo adecuado y se ‘bombea’ con luz ordinaria. Está considerado como una buena fuente láser por la relativa facilidad con que pueden obtenerse pedazos grandes y homogéneos de este vidrio.
Los vidrios dobles son dos láminas de vidrio de placa o de ventana selladas por los extremos, con un espacio de aire entre ambas. Para su construcción pueden usarse varios tipos de selladores y materiales de separación. Empleados en ventanas, proporcionan un excelente aislamiento térmico y no se empañan aunque haya humedad.
En la década de 1980 se desarrolló en la Universidad de Florida (Estados Unidos) un método para fabricar grandes estructuras de vidrio sin utilizar altas temperaturas. La técnica, denominada de sol-gel, consiste en mezclar agua con un producto químico como el tetrametoxisilano para fabricar un polímero de óxido de silicio; un aditivo químico reduce la velocidad del proceso de condensación y permite que el polímero se constituya uniformemente. Este método podría resultar útil para fabricar formas grandes y complejas con propiedades específicas.
Propiedades y estado natural:
Se prepara en forma de polvo amorfo amarillo pardo o de cristales negros-grisáceos. Se obtiene calentando sílice, o dióxido de silicio (SiO2), con un agente reductor, como carbono o magnesio, en un horno eléctrico. El silicio cristalino tiene una dureza de 7, suficiente para rayar el vidrio, de dureza de 5 a 7. El silicio tiene un punto de fusión de 1.410 °C, un punto de ebullición de 2.355 °C y una densidad relativa de 2,33. Su masa atómica es 28,086.
Se disuelve en ácido fluorhídrico formando el gas tetrafluoruro de silicio, SiF4, y es atacado por los ácidos nítrico, clorhídrico y sulfúrico, aunque el dióxido de silicio formado inhibe la reacción. También se disuelve en hidróxido de sodio, formando silicato de sodio y gas hidrógeno. A temperaturas ordinarias el silicio no es atacado por el aire, pero a temperaturas elevadas reacciona con el oxígeno formando una capa de sílice que impide que continúe la reacción. A altas temperaturas reacciona también con nitrógeno y cloro formando nitruro de silicio y cloruro de silicio respectivamente.
El silicio constituye un 28% de la corteza terrestre. No existe en estado libre, sino que se encuentra en forma de dióxido de silicio y de silicatos complejos. Los minerales que contienen silicio constituyen cerca del 40% de todos los minerales comunes, incluyendo más del 90% de los minerales que forman rocas volcánicas. El mineral cuarzo, sus variedades (cornalina, crisoprasa, ónice, pedernal y jaspe) y los minerales cristobalita y tridimita son las formas cristalinas del silicio existentes en la naturaleza. El dióxido de silicio es el componente principal de la arena. Los silicatos (en concreto los de aluminio, calcio y magnesio) son los componentes principales de las arcillas, el suelo y las rocas, en forma de feldespatos, anfíboles, piroxenos, micas y ceolitas, y de piedras semipreciosas como el olivino, granate, zircón, topacio y turmalina.
Aplicaciones:
Se utiliza en la industria del acero como componente de las aleaciones de silicio-acero. Para fabricar el acero, se desoxida el acero fundido añadiéndole pequeñas cantidades de silicio; el acero común contiene menos de un 0,03% de silicio. El acero de silicio, que contiene de 2,5 a 4% de silicio, se usa para fabricar los núcleos de los transformadores eléctricos, pues la aleación presenta baja histéresis (véase Magnetismo). Existe una aleación de acero, el durirón, que contiene un 15% de silicio y es dura, frágil y resistente a la corrosión; el durirón se usa en los equipos industriales que están en contacto con productos químicos corrosivos. El silicio se utiliza también en las aleaciones de cobre, como el bronce y el latón.
El silicio es un semiconductor; su resistividad a la corriente eléctrica a temperatura ambiente varía entre la de los metales y la de los aislantes. La conductividad del silicio se puede controlar añadiendo pequeñas cantidades de impurezas llamadas dopantes. La capacidad de controlar las propiedades eléctricas del silicio y su abundancia en la naturaleza han posibilitado el desarrollo y aplicación de los transistores y circuitos integrados que se utilizan en la industria electrónica.
La sílice y los silicatos se utilizan en la fabricación de vidrio, barnices, esmaltes, cemento y porcelana, y tienen importantes aplicaciones individuales. La sílice fundida, que es un vidrio que se obtiene fundiendo cuarzo o hidrolizando tetracloruro de silicio, se caracteriza por un bajo coeficiente de dilatación y una alta resistencia a la mayoría de los productos químicos. El gel de sílice es una sustancia incolora, porosa y amorfa; se prepara eliminando parte del agua de un precipitado gelatinoso de ácido silícico, SiO2•H2O, el cual se obtiene añadiendo ácido clorhídrico a una disolución de silicato de sodio. El gel de sílice absorbe agua y otras sustancias y se usa como agente desecante y decolorante.
El silicato de sodio (Na2SiO3), también llamado vidrio, es un silicato sintético importante, sólido amorfo, incoloro y soluble en agua, que funde a 1.088 °C. Se obtiene haciendo reaccionar sílice (arena) y carbonato de sodio a alta temperatura, o calentando arena con hidróxido de sodio concentrado a alta presión. La disolución acuosa de silicato de sodio se utiliza para conservar huevos; como sustituto de la cola o pegamento para hacer cajas y otros contenedores; para unir gemas artificiales; como agente incombustible, y como relleno y adherente en jabones y limpiadores. Otro compuesto de silicio importante es el carborundo, un compuesto de silicio y carbono que se utiliza como abrasivo.
El monóxido de silicio, SiO, se usa para proteger materiales, recubriéndolos de forma que la superficie exterior se oxida al dióxido, SiO2. Estas capas se aplican también a los filtros de interferencias.
Suscribirse a:
Comentarios (Atom)